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Chapter 1

Introduction

The increasing competition in the market of civil aircraft leads to operat-

ing efficiency and passenger comfort being very important sales arguments.

Continuous developments in jet propulsion technology helped to reduce en-

ergy consumption, as well as noise and vibrations due to the engines. The

main problem with respect to ride comfort is, however, the transmittance

of accelerations and jerkiness imposed by atmospheric turbulence from the

wings to the fuselage. This "gust" is also a design constraint: Light airplane

structures help to save energy, but are more critical to resist the loads im-

posed by turbulence. For both reasons, efficient gust alleviation is necessary

to improve the performance of modern aircraft.

Gust can be seen as a change in the angle of attack or as an additional

varying vertical component of the headwind. The effect of gust can be very

strong, since the same aerodynamic forces that k_p the airplane flying are

involved. Event though the frequency range of those changes is quite low,

it is impossible for the pilot to alleviate gust manually. Besides, most of the

time during the flight, the autopilot maintains course and the attitude of

flight. Certainly, most autopilots should be capable of damping the roughest

parts of turbulence, but they are unable to provide satisfactory results in

that field. A promising extension should be the application of subsidiary-

control, where the inner (faster) control loop alleviates turbulence and the

outer (slower) loop controls the attitude of flight.
Besides the mentioned ride comfort, another reason for gust alleviation

with respect to the fuselage is the sensibility of electrical device_ to vibration

and high values of acceleration. Many modern airplane designs - especially

inherently instable military aircraft - are highly dependent on avionics. The

life time and the reliability of these systems is thus essential. To give a vivid
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Chapter 1. Introduction 4

example, I would like to refer to a paper on Vibration Fatigue of Surface

Mount Technology (SMT) Solder Joints [1] by S. Liguore and D. Followell.

According to the graphs provided by the authors, the number of cycles to

failure can be estimated by c. e -p/m, where p is the vibration level in Grms

and c, rn are positive constants. Figure 1.1 shows that if the vibrations are

reduced by 50°_ the life time will increase by a factor 100-1000.
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Figure 1.1: Fatigue Life Correlation (Graph taken from [1])

Many papers propose controller designs based on structural measurer

ment, e.g. by accelerometers, strain gauges or - more sophisticated - PZTs

to detect gust by its effect. Some results show an improvement, but still,

without more information, they will not be satisfactory. A very promising

approach is the use of direct gust measurement. Then, information about

turbulence is available before it has a significant effect on the airplane. As

a result, the control system has more time for efficient countermeasures,

especially if the sensors are located ahead of the wings. Investigation in

that field already took place in the 1960s, e.g. for the F-100 Rough Rider

turbulence measurement system [2].

Since then, the available measurement devices have undergone further

development from simple mechanical vanes, as used for the F-100 exper-

iments, to sophisticated laser/lidar systems. I would like to mention the

research work of O.S. Alvarez-Salazar and G.M. Wang, A Novel Gust Moni-

torin9 Device [31 which is based on the forward scattering of a laser beam, as

well as the paper of D. Soreide, R.K. Bogue, L.J. Ehernberger and H. Bagley
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on Coherent Lidar Turbulence Measurement for Gust Load Alleviation [4].

The reliability of these gust measurement data is essential for the perfor-

mance of the alleviating system. Imprecise measurement can even make the
controller worsen the effect of turbulence. Obviously, when the reading point

is too far ahead of the wings, it is very likely that the turbulence changes

between measurement and the encounter with the airplane. This problem

is a matter of correlation time and will not be subject to my investigation.

Besides, I believe that there is a practical borderline anyway, beyond which

additional - even reliable - data have no further beneficial effect.

Although the motivation for my work is the gust alleviation problem,

I could also imagine further applications beside airplanes. In the field of

automotive electronics, an active undercarriage for a sport utility vehicle is

imaginable: Small radar sensors implemented in the front bumper detect

the ground conditions and "road holes" in front of the tires and adapt the

wheel suspensions for better ride comfort.



Chapter 2

Problem Definition

In the course of the following, methods for controller design using data of

direct gust measurement will be developed. Aside from a theoretical point
of view the benefit of such measurement has to be weighed against the ad-

ditional expenses incurred.
In order to find the upper bound of possible improvements, a "perfect" sys-

tem is considered. If the results are not satisfactory in this case, they won't

be applied to a real airplane (with uncertainties about the model) at all.

The following assumptions are made:

1. the whole system is exactly known, it can be described by linear dif-

ferential equations

2. the differential equations for structure and aerodynamics are at least
second order

3. the system is obser'_able and controllable

4. perfect accuracy of the measurement devices, particularly of the gust

sensors

5. no change of turbulence between measurement and encounter with the

wings

My investigation will cover both situations:

1. sensor right at the location of the wing and its actuators (collocated

system)

6
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2. sensor ahead of the wings, e.g. abreast of the nose

---. information about future gust is available ca. 0. ls before encounter

The purpose of the controller is to reduce the effect of the gust encoun-

tering the wing by providing suitable actuator signals for countermeasures.

As opposed to many designs minimizing the displacements, I will deal with

the accelerations, as the displacements (and also the velocity) themselves

have no noticeable effect on the "interior" of the fuselage. Thus, I will con-

sider the accelerations for the cost function as a first approach. Then I

will also seize the suggestion of A. Tewari [5] who proposes optimal control

considering the time-rate change of normal acceleration. He regards the

"passenger/crew comfort or weapons aiming and delivery considerations" to

be sensitive especially to this "jerkiness of the motion". Both approaches

seem applicable in view of electronic devices installed in the fuselage and

the passenger comfort.

As the differential equations of aerodynamic and structure for the gen-

eralized displacements w are assumed to be at least second order, x can be

defined as a state vector containing at least w and @. Therefore _ includes

the acceleration @. The time-rate change of normal acceleration (equals _)

is not that easily accessible in any case (at least if I want to avoid _.) but a

sufficient approximation is possible.

Hereafter I will make a discrete-time approach: The Riccati equation

for a continuous-time control system is a serious problem, as there is no

analytic solution for general system and weight matrices as well as general

"gust functions". In discrete-time a closed solution for a general case is

possible. Necessary assumptions for the existence of this solution will be
discussed.

I will consider the location of the gust sensors variable to obtain a gener-

ally valid result. Moving the measurement device to the nose of the airplane

enables the engineer to get information about future gust encounters. Of

course, modern lidar systems allow measurement far ahead of the airplane

increasing the interval of prediction, however, when going too far, the re-

liability of these data decreases due to jitter (uncertainty of time due to

changes in aircraft speed etc.) and especially changes of turbulence before it

encounters the airplane. For a theoretical analysis I consider the gust sensor

data as absolutely reliable. I expect that the performance - starting from

the measurement right at the wings - increases (the "cost" decrease) with

the distance from the wings very fast at the beginning, but then will come

to a saturation, since the knowledge of gust far in the future will certainly

not have a remarkable beneficial effect on the control problem. I would like
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to point out that - within this investigation - the expected behavior will not

be due to the increasing uncertainty (as discussed above) of future gust data

which I assume to be certain. However, for a real application the reliability

of measurement is a constraint for the sensor position. The interval between

measurement and encounter is _', so that z(t) is known for t < t < t + 7-.

2.1 System

The system can be described as a state space model in continuous-time. The
matrices are assumed to be known exactly.

y(t)

---- Ax+ Bu+ Gz (2.1)

y --- Cx+Du (2.2)

gust (velocity of vertical wind) directly at the wing. General case:

Gust is represented by several reading points (where also the sensors

are located) and a truly known shape function included in C. For the

easier case of (in spanwise direction) homogeneous gust, z is simply a
scalar.

measurement vector of structural displacements (plunge, slope, torsion

et c. )

u(t) controller output

2.2 Observer

In view of the assumption that the model and the process noise (gust) are

perfectly known for current time as well as the fact that there is no measure-

ment noise, a Kalman filter is not required. A standard Luenberger observer

is applicable:
= A_ + Bu + Gz + K (y - C:_)

If (A - KC) leads to a stable system with K sufficiently high, the initial

error will approximate zero after a short time with the limit:

lim (5-x)=O
l---*0¢

The observer wilt thus lead to almost perfect estimations soon after the

beginning of the experiment. As in this case, a computer simulation is
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processed, the state vector is accessible an)way. To keep the equations more

simple and to focus on the controller design itself I leave out the observer

(upper boundary of performance).



Chapter 3

Minimization of

Accelerations

In view of the underlying differential equations, I assume that the system

is provided for continuous-time in state space, that is the matrices A, B,

G are given. The aim is to minimize the time rate of acceleration of the

systems, especially of the fuselage. I suppose that the sampling rate is suf-

ficiently high, so that my goal is achieved by minimizing the acceleration at

the sample times.

The current time is tk, thus the purpose of the calculation is to find an opti-

mal control output Uk. To insure that all available information is considered

for the control output, the whole calculation leading to Uk will be made for

every (discrete) time t_. The rest of the sequence of control outputs will

not be used. State of the art signal processors should be able to provide the

result without a remarkable delay. The discrete-time approach easily allows

to keep the sensor position variable.

An optimal control approach for discrete-time systems is described in de-

tail by K. Ogata [6] for a system without a (known) disturbance and using
the state vector itself for the cost function. Due to these two differences and

the fact that there are various cross terms within the cost function, I have

to change the transformations resulting in another kind of Riccati equation.

Cost function:

1 T lk+_ -]
i=k

= x(t]lt=tk.., same notation for uk andXk Zk

(3.1)

10
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Xk = x(_)It=tk= (Ax(t) + Bu(t) + Gz(t)) t=tk

= Axk + BUk + Gzk

Xk+ 1 = (I_Xk + ruk + _Zk

_]_ _ e AT

_0T cAVd7 B A-lie AT I]B

j_oTeAVdTG = A-I [e AT I]G=

T = tk+l - tk Vk_> 0 sampling period

N, or to be precise NT, is the length of the considered finite horizon.

(3.2)

(3.3)

As mentioned above, I can assume that _: contains @ and @ where 4¢

represents the vector of velocities. With regard to my approach I do not

want to consider velocities within my cost functions and would choose Q1

in such a way that only the terms dealing with @ are unequal to zero.

However, as for the following calculations, I will not go on such restrictions,

especially not when discussing the necessary assumptions.

Depending on the location of the gust sensors and on the horizontal

velocity of the airplane, I will have (for a fixed T) a different number _ of

gust data Zk... Zk+n-1 available referring to the two cases as described in

chapter 2:

1. gust sensor right at the location of the wing and its actuators, that is

n = 1, no future gust data

2. gust sensor ahead of the wings. The larger _ > 1 is, the more is the
measurement device moved towards the nose. I assume that _ _< N

For the case of _ > 1, it is necessary to know the time delay r between

measurement and effect of the turbulence. Therefore, I propose to use a

sensor right at the wings in addition. Thus, T - and finally 7_ - can be
calculated as the maximum of the correlation betw_n the sensor signals.

Each measured value can be written in a shift register of length N where

the variable write position is n.

Of course, the question arises what values for the unknown gust Zk+n...

Zk+N_ 1 will be used within the cost function. Obviously, gust can be seen

as a process noise (unbiased filtered white noise) for these times. For this

additive-disturbance stochastic problem, the optimal control is identical to

the deterministic case, that is zi = 0 for i = k + _ ... k + N - 1 (certainty-

equivalence principle) [7]. The reason why I do not just set N -- 7) is that
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even if I don't have information about gust for these times, I have to consider

the dynamic of the system to suppress accelerations (e.g. due to oscillations).

I wilI derive the optimal controi law for somehow known gust Zk • •. Zk+N-1

and will later, when it comes to applying the controller, set the unknown

parts to zero as described above. This method is possible since there are no

partial derivatives with respect to zi involved hereafter. In doing so I can

avoid unpractical fall differentiations. The current state vector Xk is known.

3.1 Derivation of the optimal control law

Using the Lagrange's method, equation (3.3) provides the necessary con-
straints:

1 T 1 k+N-l_

L = 3xk+_Sxk+_+3 E [_Q,_ +
i=k

+ u_q2u, + _+, (-x,+l + +x, + ru, + ozi)]
1 T

L = 3Xk+NSXk+N +

k+_-'[(Ax,'+ +_., +G_,_TQ.(Ax,+Bui+Gz,)+
1

+3
i=k

+ LITQ2 TM+ "_1 (--Xi+l + _I_xi + rui + Ozi)]

= _xT+N SXk+N +
L

1

+3
i=k

+ uTBTQ1Axi + u_rBTQ1Bul + uTBTQ1Gzl +

+ ziTGTQxAxi + zTGTQ1Bui + ziTGTQ1Gzi 4- uTQ2u_ +

]+ .Xi+l (-Xi+l + 'I_xi + Fui + Ozi)

L

1 T Ik+N-1

X
i=k

ATQIA ATQ1B
" BTQ1A BTQIB+Q2 BTQ1G

GTQ1A GTQ1B GTQ1G

T
+ Ai+ 1 (--Xi+l + @Xi + l"ui -4- Ozi) ]

u_ _._).

+

(3.4)

(3.5)
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Usingthesesubstitutions:

L

1 W

_Xk+NSXk+N +

+ _ x3
i=k

(,1 s13)(xl)U T zT ) S21 S2 2 S2 3 Ui

S31 S32 S33 Zi

]+ Ai+_ (-xi+l + Oxi + rui + Ozi)

Note: Q1 = Q_ and Q2 = QT, thus S T = Sjl Vi, j

Q1, Q2 and S are real symmetric weight matrices.

sT=S

+

The necessary conditions for L to have a minimum read:

_L , 0 : xTSll + uTs21 + zTs31 "+" _iT+l (I_ ,_W 0

_xi

fori----k+ 1...k+N- I

xL_S - _L_ =0
for i = k + N

_L , o : x_S,_+u3S,_+,3s_ + _5,r o
3ui

for i=k...k + N-1

6L ! 0 : -xi + _Xi-1 + rui_t + OZi-1 0

for i = k+ 1...k+N

(3.6)

(3.7)

(3.8)

(3.9)

Transformations that will be used later:

Xi = oT)q+ 1 + SlSZ i + S12U i + SllX i (3.10)

fori=k + l...k + N-1

Xi+l = _xi+rui+Ozl (3.11)

The set of equations represents a two-point boundary-value problem: Xk is

known for first boundary and (3.7) provides information about the last. In

order to solve this problem a kind of Riccati transformation is applicable. I

would like to point out again that the Riccati equation for the discrete-time

case is much easier to handle than the one for continuous-time and a closed

solution is possible. Assuming that Ai can be written as follows:

Ai = Pixi + Pi where PiT = Pi (3.12)
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Taking (3.6) as my starting point:

o = x::Sll + ui_s21+ _,_s3,+ _1¢ - _
0 = xTs11¢-lF + uiTs21_-1r + zTSa]¢-lr +

xTv-lr = x_ (sl_¢-'r- s,2) + u7 (s21a-lr - S22)+
+ _'T(s3_v-_r - sa2)
fori=k + l...k + N-1

and thus:

u T = ATO-IF (s2_¢-1r- s_) -_ _
- x3 (sl_¢-xr - s_2) ($21o-lr - 822) -1 -

- z_ (s_lo-_r - ss2) (s_¢-lr - s22) -1

ui = (rT¢-'rs12 - $22) -1 rT(I'-WAi --

-- (FT(I_--T812- 822) -1 (rTcI)--WS,l- 821 ) Xi-

ui = Mi._FT¢-TA T -- Mi.v (rT@-Ts11 -- $2]) xi -

-- Minv (rTcI)--Ts13 -- S23) Z i

for i---- k+ 1...k + N- 1

(3.13)

Substitution of (3.12) into (3.10):

Pixi + Pi

Pixi + Pl

(I)Tpi+ 1 Xi+l

cI,xl+rul+Ozl

((I)Tpi+lO+Sll)xi+ ((I)Tpi+lO+S13)zi+

+ ¢I)Tpi+l + ((I)Tpi+I r + 812) ui

for i = k+ 1...k+N- 1

+(I)Tpi+l + Sl3Zi ÷ 812ui + SllXi

(3.14)

Substitution of (3.13) into (3.14):

Pixi + Pi = [_WPi+l(I) + Sll--
L
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-- (4I)Tpi+lr + S12)Minv (FT(I)--Ts11- 821)] xi +

+ [_[_Tpi+I_ + 813--

-- ((I)TPi+lF+S12)Minv(FT(]D-TSla-S23)]zi÷

+ +Tpi+, + (,I,TPi+lr + S,2) Mi.vrW.I,-w (Pixl + p,)

-Pi ÷ (I)Tpi+I _ ÷ Sll -- (_Tpi+lr + 812) Minv"

• ((FT_--TsI1 -- 821) -- FTcI'-Tpi)] xi +

for i = k+ 1...k+N- 1

Equation (3.15) must be satisfied for all xl, i = k + 1... k + N - 1

::_ set term in first squared brackets to zero:

-Pi + _TpI+I'I) + Sll + (I)TPi+IFMinvrT_-Tpi --

-- cWPi+lFMtn v (FT_-T811 -- 821 ) ÷

+ S12MinvrW_-WPi -- 812Minv (rT_-Ts11 -- S2]) ------"0

[I -- ((I)Tpi+IF + 812) MinvFT*--T] Pi =

cI)Tpi+ 1 ((]D- rMinv (FT*--TSll- 821))+ 8,7-

-- Sl2Minv (FTv--T811 -- 821)

(3.15)

Pi = [I- (_Tpi+IF + S12 ) MinvrW_--W]-1

• [vTpi+I ((I)- rMi.v (FT_-Tsl_- S2])) + Sll-

-- Sl2Minv (FTcI)--TSll -- S21)] (3.16)

for i = k+ 1...k+N- 1

Equation (3.16) is a kind of Riccati equation, that allows a backward calcu-

lation of Pi for i = k + N - 1... k + 1. The necessary final value Pk+N can

be obtained by substituting (3.12) into (3.7):

Pk+NXk+N + Pk+N = SXk+N
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Since there is no explicit constraint for Xk+ N (this is not applicable in view

of a permanent disturbance by the gust), this equation must be satisfied for

all Xk+ N. AS a result:

Pk+N = S (3.17)

Pk+N = 0 (3.18)

Now, Pk+N. • • Pk+l are known and can be used to calculate Pk+N-1 .- • Pk+l.

For this reason, I would like to remind of (3.15). The last two rows must

equal zero as well:

[_Tpi+lO + 813 - (_Tpi+lr + 812)Minv (FT_--Ts13- 823)] zi +

+ cI)Tpi+l + [(']DTpi+I r _ 812)Minv FT(I,-T - I] Pi =0

Solving for Pi:

pi= [I- (_TPi+1r+s12) MinvrT(I)--T] -1.

• [cI)Tpi+l + ((I_Tpi+IO + 813 --

_ +S12) ,ov
for i = k+ 1...k + N- 1

As z k ... ZkTN-1 are (somehow) known, Pk+N-1 ... Pk+l are available.

When it comes to calculating the required control output Uk, equation (3.13)

is not applicable, since it only holds for i : k + 1 ... k + N - 1. Therefore I

refer to (3.8):

o = x_S,2 + uTS22+ zTS32+ _5,r

0 = x_s,2+u_S22+zTs32+ (xS,P,+l+P51)r
0 = x_S,2 + u_S22+ zTs_2+ ((¢xi + rul + Oz,)Wpi+l + piWl)r

T
+ z T (Sa2 + oWPi+l r) + Pi+I F

0 ----- (S21 + rWpi+l(I )) xi + (822 + rWPi+l r) u, +

(S2a + FTpi+IO)zl + FTpi+, (3.20)+

for i= k...k + N-1

---_ _ W -1 FWpi+l ,I)) xiui (S22 + F Pi+IF) [(S2] + +
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Finally the optimal control law reads:

__ _ W -1 rWpk+l@) XkU k (S22 ÷ F Pk+ll") [(S21 + +

+ (S2a + rTpk+,O) Zk + rTpk+,] (3.21)

TO compare the performance of the gust alleviation system a "random"

gust function, or to be precise a sequence of data, should be previously

recorded for a period of time to guarantee equal conditions for the tests.

Then, for different values of 7_ and also of Q1, Q2 and S a given system

(represented by the matrices A, B, G) will be controlled. In order to obtain

comparable results I introduce a set of cost functions:

J1 --'-- xT(t)l:_ :k.(t)dt ride comfort (3.22)

J2 = xT(t)ADx(t)dt "aggregated" displacements (3.23)

,/3 = uT(_)_u(t)dt control ener_- (3.24)

The state vectors used for these functions refer to the case of the controller

applied on the continuous-time model as described in (2.1). This is closer to

a real application, in which case the accelerations between ti and ti+l have

to be taken into account as well. I would like to point out that Q1, Q2 and S

are not applicable to J1, J2 and Ja as they only establish priorities within the

controller design and may very. For comparable results, the weight matrices

need to be constant throughout the tests.

3.2 Necessary assumptions

The above-mentioned approach is only applicable if and only if all of the

following matrices are nonsingular:

A

A -1 exists if and only if det(A) _ 0. In view of an observable and

controllable system this should be the case. At least if I assume that

the system was already stabilized by a slower feedback controller (the

main purpose of the controller designed above is the minimization of

accelerations) the eigenvalues of A can then be assumed to be all neg-

ative. As a result, A would be positive definite and thus nonsingular.
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S22

S22 ----BTQ1 s -4-Q2

If(BTQIB q-Q2) isa positivedefinitematrix then itsdeterminant is

unequal to zero.

Ifa matrix(_ispositivedefinite,thatisJ -- vT(_v >_0V v and J --0

only for the case of v -- 0, then J = (Wy)T(_(Wy) = yT(TTGT)y ----

yW_y is a positive definite form, too.

If A is positive definite and t3 is at least positive semidefinite, then

vW._v d- vTI_v ---- vT(A -4-t3)V is a positive definite form, so that

(._ + t3) is a positive definite matrix.

If the terms of Q1 that refer to nonzero parts of B are at least positive

semidefinite then BTQ1B will be, too. Assuming that Q2 is positive

definite, $2-_ exists.

_ = eAT = _" (AAT)k
k----0

It can be shown [6] that the sum converges absolutely for all finite T,

so that _I' exists. Therefore, the discrete time approach is possible for

any A

According to [6], CAT is nonsingular and _-1 = c-AT

(s214,-'r - s22)

I have to prove that the determinant of (821¢I,-lr - S22) is unequal

to zero. I will use I I equivalent to det().

[s_1,I,-'r-s_21 _ 0

BTQI A4'-tA -I [4'- I]B - BTQIB - Q2 _ 0

Interim calculation:

AO-_A -1 = A
A2(-T) 2 A3(-T} 3 ]I + A(-T) + 2! + 3! +""

A-1
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AS(-T) 2 A4(-T) 3 ]= A + A2(-T) + 2] + 3! + ""

[ A2(-T)2 Aa(-T)3 ]= I + A(-T) + 2! + 3[ +""

___ _-1

The simplified equation reads:

BTQI_ -1 [_][_- I]B - BTQ1B - Q2 _ 0
!

BTQ1B - BTQI_-IB - BTQ1B - Q2 _ 0

BTQI_-IB + Q2 _ 0

h-1

If (BTQI¢-IB + Q2) is a positive definite matrix its determinant is

unequal to zero. This is the case if one addend is positive definite and

the other one is at least positive semidefinite. Q2 is assumed to be

positive definite (s_ S22).

If (QI_ -]) is a positive definite matrix, (BTQ]@-]B) will be, too,

so that the sum is positive definite. However, I think the criteria of

positive definite property is too restrictive in this case.

Simplifying the expression:

BTQI_-IB + Q2] _0

!

-1 T --1
]Q2t I+Q2 B Q]cI, B[ ¢0

IQ2[ _ 0 as Q2 is positive definite, so that the resulting condition
reads:

I

I + -1 T --1 "Q, B Q_,I, B I _0

Using the following relationship:

]In + AB[

A -- (n,r)-matrix,

= lit + BA l

B = (r,n)-matrix
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Then:
I

I + _-IBQ_XBTQ1 _ 0

Because of det(@) _ 0 I can multiplywith _I,

!

(I' + BQ_-IBTQ1] _ 0

As QI and Q2 are almost free parameters, it should be possible to
fulfil this condition, so that (821,I,_ir _ 822)-i = MinvT (and thus

also Mira,) exists.

I- (_Tpi+lr + S12) Mi,vFW_ -w]
Again, I have to prove that the determinant is unequal to zero. Using

the relationship [In + AB[ -- [Ir + BAI:

I-- (¢I)Wpi+l r "+ 812)MinvrWcI)--W t _0

I- Mi,vl"T& -T (@Tpi+IF + 812)] #0

I- (r_v-_Sl_- s=2)-_

s12-s221- L.
;o

[

•r¢¢-¢s,_- s=- rT,I,--(¢Tl_,+ir+s_2)_o

!

S22 + FT_--TcI'Tpi+Ir # 0

822 + FTpI+IF # 0

S22 was chosen to be positive definite above. For completely state

controllable systems, it can be shown that Pi+l is positive definite

or positive semidefinite [6]. The sum of a positive definite and an

at least positive semidefinite matrix is positive definite. Therefore

822 + rWPi+l r is unequal to zero and the matrix

[I- (_Tpi+lr+Sl2) MinvrT_-T] -I exists.
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S22+ FTPk+IF)
NonsingularasS22is positivedefiniteand Pk+l is at leastpositive
semidefinite(seeabove).



Chapter 4

Minimization of Jerkiness

The idea of this approach is that time rate changes of acceleration - the

jerkiness - have a direct bearing on the passengers comfort and on the
strains for electronic devices mounted in the fuselage which are delicate to

such vibrations. In simple words: Fast changes of acceleration are considered

to be worse than even larger but almost constant accelerations. However,

as already mentioned above, the time-rate change of acceleration is not easy

to handle. To illustrate this problem, I would like to give an example:

y _ W

ib ---- alw + a2(v + z + u

_t" = al_+a2'tb+£+_

If I want to minimize the jerk _0"of the system using u provided by a digital

controller I will run into trouble since u(t) is a "staircase function" which

is in principle not differentiable for all t -- tk and will lead to high peaks

for these points in time. From a pure mathematical point of view I could

use the generalized derivative that deals with 6-functions for these times,

but one the one hand I would obtain an integral of quadratic terms of 5(t)

within my cost function which is really not easy to handle and on the other

hand it would remain an ill-posed problem since any change of the controller

output leads to new and even higher values of jerkiness than the gust (as a

kind of lowpass filtered noise) itself.

More generally speaking, the difference of order - the first derivative of y

with respect to time on which 'u has an instantaneous influence - between

input u and output y of the whole system needs to be at least three. If, for

example, the differential equations of structure and aerodynamics are second

order, the used actuator or a smoothing filter for the controller output must

22
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be at least of first order•

The structure of A and x is not prescribed. To maintain this generality

I will use the following substitutions:

/_ x÷ 0 u÷

A B

_z

G

where _/2 is the vector of generalized displacements for which I want to min-

imize the jerk. Note: wl refers to the actorator(s), see the m-file const_def.m

at the appendix (A.1). With respect to the pre-condition of order, u has no
instantaneous effect on _2. Thus

The cost function for the approach of minimizing the time-rate change of

acceleration reads:

J = xT+NSXk+N + 2 i=k _[2 i QlW2i + uTQ2ui

Note: v¢2| = w'2(t) t=t_

(4.1)

Inserting the substitutions into the cost function:

1 W lk+_ -1
J --_- _Xk+sSXk+N"_- _ [mi, +_i)_ ql(eal +_ _i)+uTq2u,]

The corresponding Lagrange's function reads:

k+N-1

1 T i _ [(P,ii+G_ii)TQ1(p,i_+G211)+L = _Xk+NSXk÷N -t-
i:k

+ uTQ2ui ÷ _iT+l (--Xi+ 1 @ ¢I_xi-_- rul + Oz,)] (4._)
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4.1 Transformation of the problem to the previous

case

It would be a convenience to benefit from the calculations and finally from

the control law derived in the previous chapter. This is in fact possible as I
will show hereafter.

First of all, I have to find an approximation for _i since this information is

not available. Knowing that gust can be seen as lowpass filtered white noise,

I can assume that z(t) is smooth and, especially, does not jump. Therefore

the approximation
Zi -- zi-I

T

_ith T sufficiently small is applicable.
Then I will introduce

Zi-1

so that I can express _i in terms of _i:

1
i, = ._ [ I -I]_,

To avoid dealing with two variables for the gust I will also rewrite the system

= Ax+Bu+[ G o (4.3)
x_+_ = Vx_+ru_+[ o o ]_,_ (,4)

equations:

Using these substitutions within the Lagrange's cost function (4.2):

L

1 T

_Xk+NSXk+N +

+ uTQ2ui + A_+I (-x,+l + ¢xi+ Fui + O_,)]
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The last substitution I will make combines the coefficients for _'i:

1
_=R[o o ]+_[, -, ]

This simplifies the Lagrange's function:

L = XLNSXk+ N + _--Xi + RSui + Gzi) QI"

•(m_,x,+_u,+e_,) +uTmu,+

( ,,i+l )]+ Ai+ 1 + Oxi + rul + O_i

Obviously, the last equation is similar to (3.5) if I replace RA by A, RB by

B, C1 by G and all O, _i by O, zi. This will lead to modified matrices Sit:

L _

L _

1 k+_-I_x:+_sx_+_+_[(x,_u: _.:).
i=k

ATRTQ1RA ATRTQ1RB
BTRTQIRA BTRTQ1RB + Q2

(_TQIRA (_TQIRB

+ )_+, (--Xi+l + (l_Xi + rui + _zi)]

ATR 010)(xi)BTRTQI(_ ui

(_TQI(_ zl

1 T

_Xk+NSXkwN +

[(x_ u,-_) _?,s_ s,_+2
_=k S:n S32 Sa3 _:i

+ ._iT+l (--Xi+ 1 + ¢I)X, + ru, + _Zi)]

Again: ql = QT and Q2 = QT, thus S_ = Sji Vi, j

Q1, Q2 and S are real symmetric weight matrices.

sT=s

+

+

Keeping these substitutions in mind I can benefit from all results of the

previous chapter. Thus, I will only state the results for the sake of com-

pleteness:

Pi = [I- ((I'Tpi+IF + S12)MinvI_T(i)--T] -I

• [(I)Tpi+l ('tI)- 1-'Minv (FTcI)--TSll- S21))+ Six-
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-- S12Minv (FT_I)--TSll -- S21)]

for i = k 4-1. . . k 4- N -1

(4.5)

Pi -----

fori=k + l...k+ N-1

Uk -- -- (S22 + rTPk+lr)-] [(821 + rTpk+l_) Xk +

÷ (S2a ÷ FTPk+I_)_k % rTpk+l] (4.7)

In order to evaluate how good my goal is achieved depending on the sensor

positions, I will use a set of cost functions like in the previous chapter,

however, with the "ride comfort" as defined for this approach:

J] = ftl _ _/2W(t) RC(_2T(t)dt ride comfort (4.8)

4.2 Necessary assumptions

Even though I can "recycle" the whole calculation of the previous chap-

ter by using the above mentioned substitutions, I have to make sure that

the necessary matrix inversions are possible within the new system as well.

Again, I can benefit from the preceding investigation, but have to consider
the modified definitions:

S22

822 ----BTRTQ1R B ÷ Q2

If (BTRTQIRB 4- Q2) is a positive definite matrix then its determi-

nant is unequal to zero.

Similar to the previous argumentation for $22, if the terms of Q1 that

refer to nonzero parts of RB are at least positive semidefinite then

BTRTQ1RB will be, too. Again, I will assume that Q2 is positive

definite. =_ S_-1 exists

(s21cI,-lr - s22)

The transformations are similar to the previous case although there
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are some terms of R and R T involved. The two alternative conditions

finally read:

BTRTQzR_-IB + Q2 _ 0

'I,+RBQ21BTRTQ1 _ 0

[I-(_TPi+lr÷S12)MinvrW_ -w]

The argumentation is equal to the previous chapter since there are no

decompositions of Sij and no O involved.

S22 + rTpk+l r)
The argumentation is equal to the previous chapter since there are no

decompositions of Sij and no O involved.



Chapter 5

Computational Performance

Requirements

At first sight, the various matrix inversions seem to be a serious problem

when it comes to implementing the optimal control law on a DSP. This is,

however, not the case, as will be shown in this chapter.

5.1 Minimization of accelerations

Equations (3.16) and (3.17) as well as the included substitution Minv do

not contain the variables xi, ui or zi. As a result, the whole set of matrices

Pk+N---Pk+l can be computed offiine and saved.

Then, (3.19) can be simplified as follows:

Pl = ni (_Tpi+l + F2i zi)

where

F1 i --

I;'2 i _-

(5.1)

[I - ('I'WPi+lr + S12) Mi,,,FT'I'-T] -1

{I)TPi+l O + 813- (cI)Tpi+l r + 812)Minv (FT(I)--T813- 823 )

fori= k + l...k + N-1

Obviously, FI and F2 only depend on constant matrices and the known

Pk+N-.. Pk+l so that those matrices can be pr_computed and stored as

well. Furthermore, the fact that Pk+N and the unknown gust Zk+ n ... Zk+N_ 1
are set to zero allows another "short cut" for the calculation: Pi will (start-

ing the recursion with i --- k + N - 1) be zero as long as zi = 0, that is for
i --- k + _.... k + N - 1. To save time, for

28
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• _ = 1setdirectly
Pk+l = 0

• n > 1 start the calculation with

Pk+n-1 = F[-k+n-1 F2k+n-1 _'k+n-1

The optimal control law (3.21) can be simplified as well:

U k = F'3 (F4 x k + _'_ Z k + rTpk+l)

F3 = - (S22 + rTpk+,r)-'

F4 = 821 + rTpk+l@

F5 = S2a+FTpk+IO

(5.2)

(5.3)

Result: F1..._-5 and Pk+N-.. Pk+l can be calculated offline (before the

experiment) and stored in the controller. During the experiment only Pi, i =

k + z_ - 1... k + 1 (or none for n = 1) need to be calculated online using

simple and fast additions and multiplications. Slow matrix inversions are

not required at that time. Uk is finally derived using such easy operation as
well.

5.2 Minimization of jerkiness

Also for this approach, offline calculations for Pk+N--. Pk+l are possible

(equation (4.5)). The difference concerning the online part is (apart from

the modified definitions of Ski) the fact that now _ and _.i come into play.

F1 i = [I- (oTpi+IF + Sx2)MinvrT_--T] -1

F_ i = ¢I_TPi+l _ + 813- (_ItTei+l r + S12)Minv (rT¢I_--T813- 823 )

As a result, I have to be very careful with the above mentioned "short cut"

for Pk+l, as:

The fact that Pk+N and the unknown gust Zk+n... Zk+N-a are set to zero

requires to start the downward calculation for i = k + _, as opposed to the
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previouscase.For n = 1, Pk+l cannot be set to zero any more. The other

matrices FI for this approach read

F3 = - (S22+rwpk+lr) -_

F4 = S21+rWpk+l _

F5 = S23 +rWpk+lO

leading to the simplified control law:

Uk = F3 (F4 Xk + F5 Zk + rTpk+l) (5.5)

5.3 Possible limitations

Depending on the algorithm for matrix multiplications the computation time

will increase with O(q 3) in the worst case, where q is the dimension of

two multiplied (square) matrices. For system models of very high order,

the multiplication could become a problem. As shown above, the number

of steps for the recursive calculation of Pk+l depends on n, that is the

"distance" between the sensor(s) and the wing. For measurement far ahead

of the airplane, the recursion could require too much time and would not be

applicable any more.



Chapter 6

Implementation with

Matlab/Simulink

Now, I would like to implement the above-derived optimal control algorithms

with Matlab/Simulink, which is well-established in the field of control en-

gineering. These "experiments" will evaluate how good my goal of gust

alleviation is achieved depending on the parameters involved. I will split

the whole model in several subsystems which are described hereafter.

Figure 6.1: The test configuration and its subsystems

31
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6.1 Dryden model of gust

To receive meaningful simulation results, a realistic gust signal n_ds to be

generated. I will use the Dryden model which consists of a white noise

generator and the following second order lowpass filter:

1 + V_g
a(s) =

(1 + _ogs)2

In chapter 3 I pointed out that the gust signal should be equal within

Band-Limited ="-I
WhiteNoise

sqrt(3)'w_gust.s+l
w_gust^2.s;?.+2*w gusts÷1

Drydengustmodel

m
m

Figure 6.2: The gust source using the Dryden model

the experiments to ensure a maximum of comparability between the results.

I proposed to sample and save a random gust function and recall it for

every test. The noise generator of Matlab/Simulink does provide the same

sequence for each simulation, so that a "gust data file" is not necessary.

6.2 Airplane state space model

Despite the fact that the controller design is based on a discrete-time model

(and also a discrete-time cost function), the "real" system of course remains

continuous. Both representations lead to the same states for t = kT. The

continuous-time system, however, also provides information between these

points in time and should therefore be used for evaluation.

6.3 Controller

The controller is realized for discret_time. For this reason, all input signals,

that is the gust right at the sensor and the current states, are sampled. Of

course, the control algorithm itself could be realized by a m-file that is run for

each time step _'k like a program on a DSP. For the application on Simulink,

a transfer function, however, fits better into the signal path design. As a

side effect, the transfer function implementation allows to have an easier
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B Irrlegralor

C
Acceleeatton

X'

Figure 6.3: The continuous-time model of the airplane

insight into the controller. I will derive this for the approach of chapter 3

first and then discuss the necessary modifications for the algorithm of 4.

6.3.1 Minimization of accelerations

For the case of n > 1, (5.1) and (5.2) lead to a set of coupled equations:

Pk+n-1

Pk+n-2

Pk+n-3

Pk+2 =

Pk+l =

Eleminating Pk+n-1 --. Pk+2 I obtain:

Pk+l =

Flk+n-1 F_k+n-1 Zk+n-1

rlk+n-2 (¢I_Tpk+n-1 + F2k+n-2 Zk+n-2)

F[-k+2 (<I)Tpk+3 @ r_k+2 Zk+2)

Fl_.k+l (]DT. Flk+2 ¢I)T ....

FI k_i_ 1(I )T. F]. k+ 2 ¢I)T ....

:

F1 k+ 1 (I_ T" FJ.k+ 2 •

F].k+ 1 •

Flk+n_2 <I_T- FJ.k+n_ 1 •

Flk+n-2'

F_k+n-l"

F_k+n-2'

r2k+ 2 '

F2k+l"

Zk+n-l@

Zk+n-2@

Zk+ 2--[-

Zk+l

(6.1)
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Now,I applyaz-transformationon this equation.ToavoidconfusionI will
renamethevariablesfirst:

gk : _ Zk

l_k := Pk+l

Using the relation

z {gk+i} = z_Cz(z)

Note: Gz(z) has nothing to do with the matrix G of the state space model.

The z-transformation of (6.1) can be written as follows:

l_z(z)

l_.(z)

VF_(z)

(I_--TF2k+i ZiGz(Z) }

cI,-'rI_k+i zi} G_(z)

Now, I have a filter 15Fz(z) with gk ---- Zk (that is the gust directly at the

wing) as the input and ]_k = Pk+l as the output. The controller, however,

will receive the signal mk of the gust measurement device, that is n - 1 steps
ahead:

gk = mk-(n-1)

# z-transformation

(:;:_(z) = z-('_-l)M_(z)

Finally the filter for mk providing Pk+l reads:

_in=l 1 { [I-I_=l Flk+vCI _T] ¢I)--T__k+i zi }

PFz(z) = z,__1

Note: For the case of n -- 1, Pk+l ---- 0 so that this filter has to be set to

zero. The z-transformation of the optimal control law in the form of (5.3)
with these substitutions reads:

Uz(z) = 1;'3 [F4Xz(z) + PSGz(z) + rTf'z(Z)]

= F3[F4X.(z)+ I°Sz-(n-1)M.(z) + FTpF,(z)M.(z)]
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= Fa

GF,(z)

Uz(z) = F3 F4Xz(z) + GFz(z)Mz(z)] (6.2)

GFz(z) isa kind of "gustfilter"and has the effectofa dynamic feed-forward

part ofthe controller.

=
r T n-1 i

_i=1 { [1-Iv=l FIk+_'cI)T] ¢I)--Tlg2k+i Zi} + _

Zn-1

NllTln_l zn-1 -_-NtlTln_2Z n-2 -_-. .. -_-NtiTI2 z2 + NUmlZ -_-

Zn-1

Numi are matrices of the same size as G. The discrete transfer function

module of Simulink which I would like to use is restricted to scalar input.

Therefore, Zk and m k have to be a scalar within this evaluation.

.,J QF._,'.Cz)"1 I I

Sampling m GF

x

Samlding x F4

u,..k
F3

Figure 6.4: The controller including the feed-forward "gust filter" for the

case of chapter 3

6.3.2 Minimization of jerkiness

The following calculation for the gust part of the controller is similar to the

case above, but I have to consider zi. Equation (5.4) allows to describe Pk+l

as a linear combination of gust data:

Pk+l = FJ- k+ 1 cI_T" FJ- k+ 2 <I_T .... Flk+n-1 _I_T" FJ'k+n" F2k+n"

Flk+ 1 _I_w- Flk+2 @T .... Flk+n_ 1 • l:2k+n- 1 •

: :

Flk+ 1 ¢I)w" mlk+ 2 • F2k+2"

Flk+ 1 • r_k+ 1"

Zk+n+

Zk+n-l+

Zk+2+

_k+l

(6.3)
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I haveto considerthat onlyZk.• • Zk+n-1 are available and Zk+ n . • • Zk+N_ 1

are set to zero as described at the beginning. Therefore I have to be careful

with _'k+n :

[ ][0]Zk+n = Zk+n :--

Zk+n-1 Zk+n-1

Again, I will rename the variables and apply a z-transformation on this

equation.

Using the relation

gk

_k

Pk

:w Zk

[ IT:_ Zk : Zk Zk-1

:= Pk+l

zi I ]z {gk+i} = z_-ti G..(z)

the z-transformation of (6.3) leads to:

Pz(Z) : F].k.t__ _I_T _I}-- T F_k.t_ i

ki=l Lkv=l /

Pdz) = gG(z)G,(z)

Finally the filter for mk providing Pk+l reads:

_Z1' [(I-I_=1 FIk+_ ,_T) {I_--TF2k+i [ ziI z_-'I ]T]

H%.(z) -- zn_l +
T

(l-fvn=l Flk+v_I _T) ¢I_--TF_k+n [ O z'_-'I ]
+ zn_ l

Using these substitutions, the optimal control law in the form of (5.5) reads:

Uz(z) = F3

= F3

• [ ] ]Fa Xz(z) + Ps I Gz(z) + rTf,.(z)
z-li

I ] z_(n_l)z-_I

_(_)

+ FTpF.(z)!M,(z)
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Uz(z) = F3[F4Xz(z) + GFz(z)Mz(z)] (6.4)

Obviously the controller layout is similar to the one dealing with accelera-
tions.

Z :l [z;iz,,i
GF..(z) = zn_ 1 +

FT ([Iv=l'_ Flk+* ,q'T) q'--TF'2k+n [ O Zn-lI ]T + k-5 [ I Z-'I ]T

+ zn_l

The restriction of scalar Zk and mk also applies to this case.

6.3.3 Bounds of the controller output

With respect to the application of my controller, it is important to know the

upper bound of outputs. Real controllers and actuators can only operate

within a limited range, so that a non-linearity comes into play if outputs

exceed these limits. This would certainly reduce the performance with re-

spect to my goal. The chief problem, however, is that such non-linearities

can jeopardize stability, which is often only verified for the linear case. In

course of the following I will determine the maximum controller output for
a somehow "worst case". I will assume that the initial value of the states is

zero, as for a stable linear system this part (superposition) will decrease to

zero anyway. Thus, the states are a linear function of gust data, so that the

upper bound for the controller output is proportional to a kind of maximum

of gust. To find this upper bound for all possible sequences of gust I will

make use of norms theory, especially of H_ which is known from robust
controls.

As for the definition of the used vector norms I am quite free., as long as

some constraints are satisfied. The H_c norm for the discrete-time transfer

function matrix is defined as

is the greatest singular value of F*F. This norm is not trivial to calculate.

Therefore I will make use of the command normh±nf (sys) provided by the
robust control toolbox of Matlab. For this reason I have to transform the

whole controlled system, especially the "gust filter" of the controller, to state

space. Finally I will be able to formulate the problem as

Uz(z)=Fu,(z)Mz(z) _ Ilull _< Ilmll



Chapter6. Implementationwith Matlab/Simulink 38

Xz(z) --Fx,(z)Mz(z) =¢" [Ix[[ _< Fx " ][m[[

I will also determine the maximum for the states of the system which can

be quite useful in view of structural displacements.

Taking the control law in the form of (6.2) or (6.4) as my starting point:

Uz(z) = F3[F4Xz(z)+ GFz(z)Mz(z)]

= F3F4Xz(z)+F3GFz(z)Mz(z)

= KXz(z) + F3GF_numz(z) z-(n-UMz(z)

= KXz(z) + F3(__numz(Z) Gz(z)
n--]

Uz(z) = KX,.(z) + _ BiziGz(z)
i=-1

Bi = F3 Ca_..numi

where GF_nurni are the coefficients of the numerator polynomial of GFz(z)

for the denominator being z n-1. The inverse z-transformation leads to

n--]

U k = Kxk + E Bigk+i (6.5)
i=--I

As mentioned above, each of the "systems" Fu,(Z) and Fx,(Z) has to be

described in state space, which requires to introduce new states for all known

gust data. The corresponding dynamic matrix Og is a kind of shift register.

Xgk+ 1 = ¢I_gxg k + Bgmk

Xgk-_ 1

0

0

0

0

I O O

O I O

O O I

0 0 0

A22

--- O gk-1

• -- O gk

O gk+l

O O gk+n-1

Now, I will transform the system equation using (6.5):

Xk+l = (I)Xk+rUk+Ogk

= _IlXk + rKXk + r _ Bigk+l + Ogk
i=-I

= ((I,+rK) Xk+[L FB-1 (rBo+69) FB1Xk+l

Axl A_2

O

O

+ O mk

i
Bg

• -- FB._I !Xgk+ I
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The resultingfictitioussystemhavingmk asinput reads:

[Xk X]_[AllA12][Xk]+[O1Xgk+ 1 . O A22 Xgk Bg mk (6.6)

Xallk+ 1 Aal[ Xall k Ball

The output "y" of the system will be the vector for which I want to determine
the maximum norm.

• for Xk

Yallk := Xk=[I O ] Xallk

Callx

Dallx ---- 0

• for U k

Uk:KXk+[B-1 Bo BI --" Bn-1 ]Xg kYallk

[K B-1 Bo B1 "'" Bn-1 ]XallkYallk

Callu

nallu = 0

These matrices allow to make use of a very efficient function of the robust
control toolbox:

sysx=ss(Aall,Ball,Callx,Dallx,T);

sysu=ss(Aall,Ball,Callu,Dallu,T);

normx=normhinf(sysx)

normu-normhinf(sysu)

The whole m-file (Hinf_calc.m) is included in the appendix. Finally I obtain
for the boundaries of x and u:

[F = normx.where :Fu oc = normu and x o¢
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Now,thequestionishowgoodthese"upperbounds"of theabovestated
inequalitiesarewith respectto my application. ThereforeI wouldlike to
reviewthe resultsfor a generalcase:

Yz(z) -- Fz(z) Uz(z) _ [[Yl] -< [ _ o_" llu][

I have to assume that my input signal is band limited:

I would like to give the definition of the H-infinity norm again:

OO o)

In case _sup is greater than :zmaz, the inequality for ]]Y][ is a very rough
estimate and a constant c exists such that

Thus I[FHo_ is not the supremum of c for this particular input signal.

Obviously, it is necessary to regard the results provided by Hinf_calc.m in

view of the application. If the eigenfrequencies of the controlled system are

within the bandwidth of the input signal (gust) the H-infinity norms are a

good estimation.

6.3.4 Performance indices by means of H-infinity

With respect to evaluation of the controller designs it is also interesting to

compare similar Hoo norms for acceleration and jerk, respectivel}, of the

controlled system and the system without the controller. These norms can

also help to guarantee that specifications e.g. for maximum acceleration are
observed.

An,(Z) = FAc,(z) M,.(z) =:_ II_=fl-< II:F .lloo'llmll no contr.

Ac,(Z) = FAn,(z) Mz(z) =# ][ac H _< HF.cH 'IImI[ controlled

Jn,(Z) = Fjc=(z) Mz(z) ==_ HJnH-< HFjnHoc'[]m][ no contr.

Jc.(Z) = Fjn,(z) Mz(z) =_ ]]Jc[[ -< ][Fjc[[oc.l]m H controlled

These calculations are also part of Hinf_calc.m and use the fictitious system

described by Aall, Ball and Xank for the controlled system norms. A_ for
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the system without a controller, I replace Aan by/kau. I will set a -- L_ for

the first and j = L w2 for the second approach. L selects the states related

to the fuselage as this is in line with my design goal, IIL]I = l is assumed.

xgk+ 1 = _g xg k + Bgmk as for the controlled case

-_22

Xk+l = ¢I_Xk + _gk

Xk+ I = ,_ Xk+ [ 00 O ]Xlgk+ I

Therefore, for the system without a controller I obtain:

Xgk+ 1 O A22 Xgk Bg mk (6.7)

Xallk-t- 1 Aall Xallk Ball

Now, I can determine the various C and D matrices so that the output of the

fictitious transfer function equals the variable for which I want to calculate

an upper bound.

• accelerations of the system without a controller

an k = Lxk

= L (Axk + Ggk)

[
Yalik = J LA

Dallan = 0

Use _-_al for the dynamic matrix.

0 LG 0 ] XaUk
i

(_allan

• accelerations of the system with the controller

aek = L_:k

= L (AXk + Buk + Ggk)

LAxk+LB(Kxk+[ B-1 Bo B1 "'"

I

I I

Yallk ----- L [ (A + BK) BB-1 (BBo + G) BB1

Ctllac

Dallac = O

Bn-1 ] Xgk) + LGgk

• "- SSn-I ] Xallk

Use Aan for the dynamic matrix.
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• jerkiness of the

j_ = L/¢2k

/;2 = -M2-*[K2

4/2 = -M2-*[K2

system without a controller

D2 O]x k

D20]:K k

Jnk = --LM_-I [ I_ D20 Ix k

:Kk =

Yallk :

A 0 G 0 ]XaUk

Calljn

Da, b. = O

Use Aan for the dynamic matrix.

• jerkiness of the system with the controller

Jck = L/_/Zk

_k : RXk "_- (_gk

_ RAxk+RBuN+(_ [ gk]gk-1

= R(A+BK)xk+RB[ B__

_2 k ,_

Yallk =

RBBI "" RBBn-I

Yallk ----- Calljc Xalik

Daujc = 0

Use Aall for the dynamic matrix.

Bo B1

G

[i] [o]+ G O gk + (_ I gk-1

1

--" RBBn-1 [XankRBB1

.J

Xallk

O ] Xallk

Bn-1 ] Xg k "]-

RBBo + (_ [ I

RBBo + G [ I

o

o
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The difference between []F_]]_ and IIFacll_ as well as IIFjntl_ and ][Fjc]l_,

respectively, provides information about the beneficial effect of the particular

controller for the worst case of gust. I will divide these differences by the

norm for the controlled case to obtain an index telling how many percent

the system behavior is worse without the controller:

improvement(a)

improvement(j)

F_' o¢- _'ac o¢ 100%

_'J'_ _ - I_'J_ _ lOO%

In the previous section, I discussed the meaningfulness of the boundaries

calculated using H-infinity norms. Since the performance indices are based

on the same theory, I should consider the bandwidth of the input signal for

the particular application as well.

6.4 Evaluation module

This subsystem contains the cost functions J3, J'2 and Jl or J1 for each test

to provide easy to compare results. The scopes show the increase of cost

during the experiment. Hereafter is shown the subsystem for the approach

of chapter 3 and chapter 4. To calculate the jerkiness and the ride comfort

within the second approach I make use of a derivative element. I would like

to point out that such an element is not used for the controller itself.
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Q MATLABD DFunctionI = =
u

Controller Output Integrator CE Control Energy

Function
X'

Acceleration Integrator RC Ride Comforl

x 'v I Function
Displacement Integrator AD Aggreg. Displ.

Figure 6.5: The evaluation subsystem for acceleration control

,..I MATLAB I _1_F-_sjo "1 Function I
Controller Output Integrator CE Control Energy

d"3
select w2 Derivative

MATLAB _{_Function

Jerkiness Integrator RC

Jerkiness of w2

x "1 Function
Displacement Integrator AD

Ride Comfort

Aggreg Displ.

Figure 6.6: The evaluation subsystem for jerkiness control
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6.5 M-files

All constants within the evaluation are defined in const_def.m, that is: The

sytem (described by A, B, G), the weight matrices (S, Q1, Q2), the sam-

piing period T, the number of available gust data _, the length of the finite

horizon N and the parameter _g for the Dryden model of gust.

const_calc_l.m, const_calc_2.m respectively, calculate all variables that de-

pend on the definitions in const_def.m. The calculation of the various H_

norms is implemented in Hinf_calc.m. Finally, pzmap_calc.m plots the pole-

zero map for the system with and without the controller to verify" stability.

All of these files are included in the appendix.



Chapter 7

Preliminary Simulation

7.1 Test configuration, system and actuator

To examine the performance of the two different controllers and their im-

plementation a very simple oscillator (pendulum) will be subject to control.

Its differential equation reads:

1

The step response of the system without a controller is shown in figure 7.1.

The disturbance (gust) and the actuator lead to a force f that has influence

on the oscillation. Often there is a delay between the occurrence of a distur-

bance and its effect (here the unwanted oscillation), as well as between the

"command" of the controller and the moment the countermeasures really

come into effect (because of actuator delays). With regard to this problem
information of future disturbance should be able to increase the controller

performance. To stress this effect, I chose a slow PT2 actuator. Its transfer
function reads:

1

G(S) = 0.04s2 + 0.2s + 1

The step response is shown in figure 7.2. I also tried a PT1 actuator for the

controller dealing with jerkiness, since the difference of order is smaller in

that case: 1
a(s)= --

s+l

The step response is shown in figure 7.3.

46
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I

i

Figure 7.1: Step response of the pendulum itself
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Zr r .......... -_

i /

Figure 7.2: Step response of the PT2 actuator
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T;tre (_z,)

Figure 7.3: Step response of the PT1 actuator
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7.2 Minimization of accelerations

Since this approach is not critical regarding the disturbance gk (or Zk)

can use a simple step function that allows easily comprehensible results to

determine whether the control algorithm works as expected.

The main criteria for the comparison of the cases n = 1 and _ -- 30 is of

course the ride comfort index at the end of the simulation. I tried to keep

the magnitude of the controller outputs within the same range, so that the

performance does not depend on that. I also calculated the control energy

for the sake of completeness, although the energy will be - as opposed to the

output range - not be a problem to most applications. The displacements

should of course not become too large, even though it is not the purpose of

this controller to keep them as small as possible. Obviously, the results are

much better, if more gust data are available. Then, as can be seen from fig-

ure 7.6, right graph, the controller begins its countermeasures already before

the disturbance encounters the system, what leads to lower accelerations.

Figure 7.4: "Ride comfort" as the integral of squared accelerations for n=l
and n---30
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Figure 7.5: Measurement data and disturbance for n--1 and n=30
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Figure 7.6: Controller output for n--1 and n=30
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Figure 7.7: Acceleration of the pendulum for n=l and n--30
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Figure 7.8: Displacement of the pendulum for n=l and n=30
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Figure 7.9: "Aggregated displacements" as the integral of squared displace-

ments of the pendulum for n=l and n--30
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Figure 7.10: Control ener_' for n=l and n=30
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7.3 Minimization of jerkiness

Dealing with the jerkiness is critical with respect to the tim_derivative of the

disturbance. It is important that the disturbance function is differentiable

for every time. Hence, I choose the first half wave of a sin2(,zt) function,

which also has the advantage, that its derivative is zero for t --- 0.

7.3.1 PT1 actuator

i i i a
. _o Is :o a8 o

O]
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o
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Figure 7.11: "Ride comfort" as the integral of squared jerkiness for n=l and
n=30



Chapter7. PreliminarySimulation 54

/
J

o$- I

ow

o7 ...........

...... i ................i................................................

o_- l i i

I

Figure 7.12: Measurement data and disturbance for n--1 and n=30
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Figure 7.13: Controller outpu! for n=l and n--30
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Figure 7.14: Jerkiness of the pendulum for n--1 and n--30
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Figure 7.15: Acceleration of the pendulum for n=l and n--30
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Figure 7.16: Displacement of the pendulum for n=l and n--30
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Figure 7.17: "Aggregated displacements" as the integral of squared displace-

ments of the pendulum for n--1 and n=30



Chapter 7. Preliminary Simulation 57

J

I
T r -v

J

Figure 7.18: Control energ3 T for n--1 and n=30
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7.3.2 PT2 actuator

For the jerkiness control with a second order actuator I have to assume at

least n = 2. The gust filter calculated for this approach (PT1 as well as

PT2) is a weighted sum of gust data mk_l, mk,..., mk+n_ 1 where _k is the

current point in time. As opposed to the case of a first order actuator, here

the factorial for mk-1 is always equal to zero, since BTR w = O. In view of

the approximation for gk I need at least two consecutive gust data. Thus

n = 1 is not applicable. Also for this simulation, an improvement is visible

when increasing the available data.
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Figure 7.19: "Ride comfort" as the integral of squared jerkiness for n=2 and

n=30
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Figure 7.21: Controller output for n=2 and n=30
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Figure 7.23: Acceleration of the pendulum for n=2 and n=30
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Figure 7.24: Displacement of the pendulum for n=2 and n=30
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ments of the pendulum for n=2 and n=30
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Figure 7.26: Control energy for n=2 and n=30



Chapter 8

Application on a

Wing-Fuselage System

8.1 Test configuration, system and actuator

For the main experiment I choose a two degree of freedom system. Of course,

with respect to my theory, I could use a more difficult model since neither

the number of actuators, nor the degree of freedom is limited. However,

this "simplified airplane" consisting of a wing, a fuselage and one first order

actuator is sufficient for evaluation, as I am interested in qualitative rather

than in exact results. The sketch of figure 8.1 illustrates the variables and

constants of the state space representation:

][ 1+[ Ol
M2 @2

KI -K1+ -K1 K1 + K2

][1w2a +

-D1 D1 + D2 w22

D2 _2

1[:::] ]
W2 B2wl

For the determination of the spring and damping constants, I made the

following assumptions:

• The mass of the fuselage is 100 times higher than that of the wing
which I set to 1.

• The natural fi'equency (mode) of the wing itself is about 4Hz and the

damping is 10_.

63
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Figure 8.1: Sketch of the wing-fuselage system

• The fuselage itself has a mode at about 1Hz and a damping of 2.5%.

This leads to the following set of constants:

Mass rn = 1 M = 100

Spring K1 = 700 K2 = 4000

Damping D1 = 20 D2 = 0.3

The natural frequency of the fuselage is clearly visible at the bode plot (figure

8.2). For the step response of the coupled system (figure 8.3) the system

input is an external force (the gust) to the wing.

The actuator model contains all dynamic parts including the servo-motor

and the mechanism moving the ailerons or flaps. Therefore the time constant

is higher than for a typical servo itself. The step response is shown in figure
8.4.

I will refer to the Dryden model of gust, as described above. Figure 8.5

shows the Bode plot for the case of oagust = 0.1.
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Figure 8.2: Bode plot of the wing-fuselage system
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Figure 8.3: Step response for the wing-fuselage system



Chapter8. Applicationon aWing-FuselageSystem 66

iiI ....................................
lime (lec}

Figure 8.4: Step response of the first order actuator
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Figure 8.5: Bode plot of the filter for the Dryden model of gust
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In order to knowthe systembehaviorwithout the controller,I would
like to give the samegraphsthat will be discussedin the followingtwo
experimentsalsofor the systemwithout a controller. Of course,this is
not very realistic,as therewill alwaysbe a controller- eventhoughits
purposeis just to reducethedisplacements- sothat thedampingwouldbe
higher.However,I think it contributesto the understandingof thesystem.
In anticipationof the mainexperiments,I wouldlike to givethenormsfor
accelerationandjerkinessfor thissystemwithout a controller:

The eigenfrequenciesof the systemarearound1Hz,4Hzrespectively,and
thuswithin thebandwidth oftheDrydenmodelofgust (see8.5). Although
llg[[ is approximately8.5for this simulation,the accelerationand thejerk-
inessaremuchsmallerthan the limit givenby meansof the corresponding
H-infinity norm. On the onehand,theapplied"turbulence"wascertainly
not the worstcase,whichwouldbea sinuswavematchinga systemmode.
On theother, thesimulation,especiallythe periodof disturbance,wasper-
hapsnot longenough:The displacements(seefigure8.8, left graph)seem
to beon theincreaseevenat theendof thedisturbance,what suggeststhat
a kind of "steadystate" on a higher level is not yet reached.Thus, for
quantitativecomparisonswith thefollowingsimulationsI ratherreferto the
H-infinity norms. For the evaluationamongdifferentsensorpositionsthe
test periodwill provesuitable.
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Figure 8.6: "Ride comfort" as the integral of squared accelerations (left)

and jerkiness (right)
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Figure 8.7: Accelerations and jerkiness of the fuselage



Chapter8. Applicationona Wing-FuselageSystem 69

0¢I

of a

©

-oar

-oo4

-(Ice

1o

i
5 IW 1_ ZO

_m,z

Figure 8.8: Displacement of the fuselage and the gust applied to the wing
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8.2 Minimization of accelerations

First of all I would like to refer to the pole-zero maps (figures 8.9 and 8.10)

to check for stability. For both values of n the eigenvalues are within the unit

circle, the controlled systems are stable. I don't have to worry about the

feed forward part of the controller, since for a stable linear system, bounded

"disturbances" - the gust and the feed forward component which is only a

weighted sum of a finite number of bounded gust data - can never lead to

unbounded states and jeopardize (bibo) stability.
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Figure 8.9: Pole-zero map: system without (green) and with the controller

for n=l (blue)

Now, I would like to discuss the H-infinity norms as calculated by Hinf_caIc.m:

Index n=l n=30

l]_'ac[]_ 0.5070 0.1737

HFa,,[[c¢ 179.6118 179.2839

IIPuH_ 32.2925 32.3339

t[t,,tl:¢ 10.2074 10.0359

Improvement a 353.2302 1031.2



Chapter8. Applicationona Wing-FuselageSystem 71

F_--zaro r_p

"-x
. .. , . _.\

y4 . . . •

_, ' ..!.... :'-!:: ..... . .

/ "i
/

• _ _" -

Figure 8.10: Pol_. zero map: system without (green) and with the controller

for n=30 (blue)

The values of [l_'antloc for n. = 1 and n = 30 should be equal, the

difference is due to inaccuracies of the calculation. For both, the system

with and without a controller, the modes are around 1Hz, 4Hz respectively,

and thus within the band width of gust. I would like to give the following

upper bounds for [IgN _ 8.5 with respect to the inequalities stated in section
6.3.3:

bound for n= 1 n=30

lla,:ll 4.31 1.48

llull 274.49 274.84

The controller output remains clearly below these limits within my sim-

ulation, but for a more critical gust function some peaks could be higher.

The accelerations for n = 30 are already close to the theoretical borderline

for this particular controller but for the case of n -- 1 the performance will

deteriorate in the worst case making the advantage of additional gust data
even more obvious.

The main criterion for my evaluation is the "ride comfort" which I de-

fined (for this approach) as the integral of the squared accelerations. Ev-
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ery simulationlasts 25 secondsand I apply the samegust sequencefor
ls < t < lls to the system, so that the results are easily comparable.

It is unquestionable that already the controller for r_ = 1 leads to a signifi-

cant improvement of all considered criteria. Thus, I will concentrate on the

question whether the additional information available in the case of _ = 30,

which equals data almost about the next 1.5 seconds (T=0.05s), leads to a

remarkable increase in performance.

I will give the results of this comparison in tabular form. I would like to

remind of the fact that a comfortable ride has a low (!) ride comfort index.

Increase/Decrease of the results for n=30 compared with the case of n=l:

Ride comfort index -58%

Controller Output -1%
Accelerations -24%

Displacements -47_

Aggregated displacements -69%

Note: The percentages of the table for the accelerations, the displacements

and the controller output refer to the maximum absolute value of each graph.
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Figure 8.11: "Ride comfort" as the integral of squared accelerations for n= 1
and n=30
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Figure 8.13: Controller output for n=l and n=30
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Figure 8.15: Displacement of the fuselage for n=l and n=30
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Figure 8.16: "Aggregated displacements" as the integral of squared displac_

ments of the fuselage for n---1 and n=30
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Figure 8.17: Control ener_ for n--1 and n=30
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8.3 Minimization of jerkiness

Also for this approach, I will check for stability in the first place. As can be

seen from the pole-zero maps (figures 8.18 and 8.19) for both values of 7_the

eigenvalues are within the unit circle and the controlled systems are stable.
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f // ..
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- /
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f
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Figure 8.18: Pole-zero map: system without (green) and with the controller

for n=l (blue)

The H-infinity norms for my two approaches show the same trend. The

results provided by Hinf_calc.m read:

Index n=l n=30

HFjcIt_ 4.0383 3.2450

HFjn[[o¢ 1129.9 1128.9

llrull_ 21.3451 19.1240

IIF_It_ 14.4614 10.0953

Improvement j 278.7991 346.9065

The values of IIPjnH_ are slightly different due to inaccuracies of the

calculation. The modes are off course still around 1Hz, 4Hz respectively.

The upper bounds for ]IJc[I and [[u][ are given for llgll _ 8.5:
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Figure 8.19: Pole-zero map: system without (green) and with the controller

for n=30 (blue)

bound for n= 1 n=30

IIJ¢ll 34.33 27.58

lluH 181.43 162.55

Again, the controller outputs remain far below these limits, but the maxi-

mum of jerkiness within my simulation reaches about 50% for both values
of n.

Comparing the graphs for n = 1 with the results of the system on its

own, there is no doubt that the controller is able to reduce jerkiness. Again,

the question is whether the extension towards n = 30 allows a significant

increase in performance. The results of the comparison between n=30 and
n=l read as follows:

Ride comfort index -51%

Controller Output -2%
Jerkiness -32_

Accelerations -40_

Displacements -48%

Aggregated displacements -73%
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Note: The percentages for jerkiness, accelerations, displacements and con-

troller output within the given table refer to the maximum absolute value

of each graph.

I would like to recall the "Fatigue Life Correlation" diagram that I dis-

cussed at my introduction. Although the improvement due to the additional

gust data is not as evident as in the case of the first approach or within my

preliminary simulations, for the jerkiness, a reduction of 32_ can still lead

to a substantial increase in life time. For the example of vibration fatigue

of SMT solder joints it is more than a factor 100.

ts

i sl

141

I ,,ii, i,. .ii.iiiii!DII

Figure 8.20: "Ride comfort" as the integral of squared jerkiness for n--1 and
n=30
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Figure8.21:Measurementdataanddisturbancefor n--1 andn--30
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Figure 8.22: Controller output for n---1 and n--30
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Figure 8.23: Jerkiness of the fuselage for n=l and n=30
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Figure 8.24: Acceleration of the fuselage for n=l and n=30
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Figure 8.25: Displacement of the fuselage for n---1 and n=30
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Figure 8.26: "Aggregated displacements" as the integral of squared displace-

ments of the fuselage for n=l and n=30
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Figure 8.27: Control energy for n---1 and n=30
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8.4 Discussion of appropriate sensor positions

I already gave an affirmative answer to the question whether moving the

measurement device ahead of the wings has a remarkable beneficial effect.

Indeed, that should be the case for almost every system and I showed the

improvement for the particular case of a wing-fuselage system. However,

the question remains how far ahead it is appropriate to place the sensors.

There is no general answer to this question, and the possible improvement

is highly dependent on the particular system as well as the actuator that is

used. In principle, additional information should be of more benefit if the

delays between the encounter of gust and the undesirable effects on the one

hand and the delays between the start of countermeasures and their effect

on the other are large.

One possibility to decide on the sensor position is to look at the feed for-

ward part of the controller in the form of a transfer function, as described in

chapter 6. This representation allows an insight in the control algorithm, as

the weights of all available gust data are shown. Starting from the calcula-

tion for the sensor far ahead (n = 30 in this case), I can examine how many

of the highest powers of z I could neglect since their coefficients are too small

to have a major effect on the controller performance. The highest remaining

power of z defines the upper bound of "reasonable" improvements.

To illustrate this strategy I would like to give the feed forward transfer

function for the system of my preliminary simulation. The approach of

minimizing the jerkiness using a PT2 actuator (section 7.3.2) provides the

best example for that purpose:

Uffz(z ) = F3 GFz(z) Mz(z) =

0.0016z ° - 0.00122 9 - 0.0041z 2s - 0.0068z 27 - _ 0.0056z 13 -V V •

- 0.0007z 12 + 0.0050z 11 + 0.0112z 1° + 0.0167z 9 + 0.0167z s -

- 0.0061z 7 - 0.1148z 6 - 0.5375z 5 - 2.101z 4 - 7.795z 3 -

28.45z 2 + 29.84z] z-3°Mz(z)

It seems that the gust data of gk-.. gk+5 have the most influence on the

controller output, so one could try whether the performance for n - 6 is

already sufficient.

For the wing-fuselage system, however, the coefficients of even the high-

est powers of z are significantly different from zero, what shows that the

gust data in the distant future still help to improve ride comfort in the sense
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of theparticularapproach.

The feedforward transferfunction for the experimentof minimizingac-
celerationsreads:

ufr.(z) =

0.4047z 9 + 0.2655z 2s + + 0.7933z 15 + 1.176z 14 + 1.476z 13 +I I q

+ 1.652z 12 + 1.676z 11 + 1.534z 1° + 1.215z 9 + 0.7121z s + 0.0505z 7 -

- 0.6693z 6 - 1.308z 5 - 1.854z 4 - 2.508z 3 - 3.341z 2 -

3.696z - 2.491] z-29M_.(z)
J

The corresponding function for the approach of minimizing jerkiness:

ufr, (z) =

0.2141z ° + 0.1484z zq + 0.0572z 28 - 0.0506z 27 q- _ 0.290626 q-• p v

0.6206z 5 + 0.5423z 4 - 3.459z 3 - 8.8322 - 0.8890z + 0.4897] •+
.,,I

• z-3°Mz(z)
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Final Remarks

9.1 Conclusions

The simulations proved that both controller designs are able to accomplish

their individual design goal. It turned out that the main constraint for the

application of gust measurement ahead of the wings is the availability of

suitable measurement devices, their accuracy and the additional expenses

for this technolog-y rather than a limit of improvements close to the wings.

Future work in the field of direct gust measurement should deal with

relaxed constraints for the accuracy of data to find an optimum between re-

liability of data and the prediction interval. The major task, however, is the

further development of sensor technology. Aside from improvements regard-

ing range and accuracy, the decoupling from the vibrations of the fuselage

or the wings - wherever the device is mounted - is essential. Otherwise the

measured data are also a function of system states and the feed forward

property cannot be assumed anymore.

Even though this investigation equates the disturbance to the system

with atmospheric turbulence, both control algorithms are applicable to any

kind of ride comfort problem provided that the given set of constraints is
satisfied.

85
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Appendix A

Matlab M-Files

A.1 const_def .m

This is just an example. The m-file is adapted to each experiment.

7. Blu=fl -> [(MIwI''+)Dlwl'+KIwI=fl]

7. -> wl eig_cher first or second order diff. eqn. e.g. actuator

7. B2wl=f2 -> [ M2w2' '+ D2w2'+K2w2=f2]

7. -> w2 second order diff. eqn.

7. x=[w2 w2' wl wl'J'T

7. M,D,K all square matrices

7. "actuator"

7. MI=[]; 7. if applicable

DI= [0.2] ;

K1- [11 ;

B1=[0.5]; 7, fl=Bl*u

7. "system" [wing fuselage]'T

M2=[1 0;

0 1001 ;

D2= [20 -20;

-20 20.3] ;

K2= [700 -700 ;

-700 4700]

B2=[1; 02 ;

G=[O;O; 10;0;

S= [IOOOO00000

0 1OOO0O 0

00000;

00000;

000001;

QI=[O 0 0 0 O;

00000;

0O100;

7. f2=B2*wl

0]; 7. gust effect on x=[w2;w2';wl;wl']'T,

7. x-[w2;w2';wl]'T repectively

0 0 0 O;

0 O;

weight matrix for final value of x:

% x_(k+N) must be symmetric

7. weight matrix for x' must be symmetric

88



Appendix A. Matlab M-Files 89

0 0 0 10000000 0;

0 0 0 0 0];

q2=1000;

RC=[0 0 0 0 0;

00000;

00000;

0 0 0 1000 0;

00000];

JLD=[0 0 0 0 0;

0 1000 0 0 0;

00000;

00000;

00000];

CE=l ;

T-O.05;

n-30 ;

N=40 ;

w_gust-0.i;

and some terms pos.def.

veight matrix for u must ms symmetric

and pos. def.

only lover right term uuequal to zero

only upper left term unequal to zero

Evaluation of the control energy size as Q2

sample period

number of available gust data

length of the finite horizon, N>-n

parameter for Dryden gust model

A.2 consf_calc_l, m

Dlsize=sizeCD1);

D2size=size(D2);

Blslze=sizeCB1);

if exist('Ml','var')==l

A=[zeros(D2slze) sye(D2size(1)) zeroe(D2size(1),Dlsize(2)) zeros(D2size(1),Dlsize(2));

-inv(M2)=K2 -inv(M2)=D2 inv(M2)*B2 zeros(D2slze(1),Dislzs(2));

zeros(Disizs(1),D2eize(2)) zeros(Dlsize(1),D2size(2)) zeros(Dlsize) eye(Dlsize(1));

zeros(Dlsize(1),D2size(2)) zeros(Dlsize(1),D2slze(2)) -inv(Ml)*Kl -Inv(Ml)*Dl];

B=[zeros(2=D2size(1)+Dlsize(1),Blsize(2)) ; Inv(MI)*BI];

case of vl: 2nd order diff. sqn.

else

A=[zeros(D2size) eye(D2size(1)) zsros(D2size(1),Dlsize(2));

-Inv(M2)=K2 -inv(M2)=D2 inv(M2)*B2;

zeros(Dlsize(1),D2slze(2)) zeros(Dlsize(1),D2slze(2)) -inv(D1)sK1];

B=[zeros(2*D2slze(1),Blsize(2)) ; lnv(D1)sB1];

case of vl: let order diff. eqn.

end

G already defined in const_def

Asize=slze(A);

Bsize=slze(B);

Gsize=slze(G);

Phi-ezpm(A=T);

GagJna=Inv(A)*(Phi-eye(Aslze(1)))*B;

Theta=inv(A)_(Phi-eye(Aslze(1)))*G;

SII-A'*_I=A;

S12=A'*Ql*B;

S13=A'*Ql=G;
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S21-B'*QI*A;

S22mB_*Ql*B+Q2;

S23=B'*QI*G;

S31=G_*QI*A;

S32=G'*Ql*B;

S33"G'*Q1*G;

Hinv=inv(Gam_a'*inv(Phi')*S12-S22);

nov calculating P_i for 1-k+N...k+l, hers k set to 0

P_i is of the same size as A

P=zsros(Aslze(1), Asizs(2), N);

P(:,:,N)-S;

for 1-N-I:-I:I

p(:,:,l)-inv(eye(Aslzs(1))-(Phi'*P(:,:,l÷l)=Gamma+Sl2)*Minv*Gamma_*inv(Phi'))

,(Phi,.p(:,:,l+l)*(Phi-Gannna*Mlnv*(Gamma'*Inv(Phi')*Sll-S21))+S11-S12

*Minv*(Gan_a'*inv(Phi')*Sll-S21));

end

nov calculating Fl_i and F2_i for i=k+n-l...k+l,

sufficient as only p_(k÷n-1)...p_(k+1) calculated,

here k set to 0

FI_i is of the same size as A, F2_I is of the same size as G

if n>l

Fl=zsros(Aslze(1), Asize(2), n-l);

F2-zeros(Gslzs(1), Gsize(2), n-l);

for i=n-1:-1:1

Fl(:,:,l)=inv(sys(Asize(1))-(Phi'*P(:,:,l+l)*Gamma+S12)*Minv*Gamma'*inv(Phi'));

F2(:,:,l)=Phi'*P(:,:,l+1)*Theta+S13-(Phi_*P(:,:,l÷l)*Gan_a÷S12)

*Minv*(Gamma'*inv(Phi')*S13-S23);

end

end

matrices required for controller

F3=-Inv(S22+Gamma'*P(:,:,l),Gan_a);

F4=S21+Gan_a'*P(:,:,l)*Phi;

FS=S23+Ga_a'*P(:,:,l)*Thsta;

GF_num=zeros(Bslzs(2),n); _ #rows like u_k, n columns for z'(n-1)...z_O

GF_den-zeros(1,n);

GF_den(1,1)-l; _ denominator is z'(n-l)

for 1-I:n-I _ coefficient for zAl, for n=1 the loop is skipped !

FProd=eys(Asize(1));

for r=l:l

FProd=FProd*Fl(:,:,r)*Phi';

end

GF_num(:,n-1)=Gamma'*FProd*inv(Phi')*F2(:,:,l);

coefficient for z'l is located at column (n-l)

end

GF_num(:,n)-FS;
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A.3 const_calc_2, m

Dlslze=slzeCD1);

D2slze-slze(D2);

Blslze-slze(B1);

if exlst('Hl',Jvar')-'l

A=[zeros(D2slze) eye(D2size(1)) zeros(D2size(1),Dlsize(2)) zeros(D2slze(1),Dlsize(2));

-±nv(M2)*K2 -Inv(H2)*D2 Inv(H2)sB2 zeros(D2slze(1),Dlsize(2));

zeros(Dlslze(1),D2size(2)) zeros(D1size(1),D2size(2)) zeros(Dlslze) eye(Dlsize(1));

zeros(Dlslze(1),D2slze(2)) zeros(Dlsize(1),D2size(2)) -inv(M1)*Kl -inv(M1)*Dl];

B=[zeros(2*D2size(1)+Dlsize(1),B1slze(2)) ; Inv(H1)*B1];

case of vl: 2nd order diff. eqn.

else

A=[zeros(D2size) eye(D2size(1)) zeros(D2size(1),Dlsize(2));

-Inv(N2)*g2 -inv(N2)*D2 inv(H2)*B2;

zeros(D1size(1),D2size(2)) zeros(Dlsize(1),D2size(2)) -inv(D1)sK1];

B=[zeros(2*D2size(1)0Blsize(2)) ; inv(Dl)*Bl];

case of vl: 1st order diff. eqn.

end

G already defined in const_def

Asize=size(A);

Bsize=size(B);

Geize=size(G);

Phi=expmCA*T);

Gamma=invCA)*(Phi-eye(AsizeC1)))*B;

Theta=inv(A)*CPhi-eye(AsizeC1)))*G;

R=h(D2size(1)+l:2*D2size(1),:); _ the rows of A referlng to w2''

Thetat= [Theta zeros(Gsize)];

Gt-R*[G zeros(Gsize)]+G(D2size(1)+1:2*D2size(1),:)s[eye(Gsize(2)) -eye(Gsize(2))J/T;

Thetatsize=size (Thetat);

S11-A'*R'*Ql*R*A;

S12=A'*R'*QI*R*B;

S13=A'*R'*Ql*G¢;

S21=B'*R'*QI*R*A;

S22=B'*R_*Ql*R*B÷_2;

S23=B'*R'*Q1*Gt;

S31-Gt'*QI*R*A;

S32-Gt'*Q1*R*B;

SS3"Gt'*Ql*Gt;

Hinv-inv(Gamma'*inv(Phi')*S12-S22);

now calculating P_i for i=k+N...k+l, here k set ¢0 0

P_i is of the same size as A

P-zeros(Asize(1), hsize(2), N);

P(:,:,N)=S;

for I=N-I:-1:1

P(:,:,l)linv(eye(Asize(1))-(Phi'*P(:,:,l+l)*Gan_na+S12)*Hinv*Gamma'*inv(Phi'))

*(Phi'*P(:,:,l+l)*(Phi-Gamma*Minv*(Gamma'*inv(Phi')*S11-S21))+S11-S12

*Ninv*(Gamma'*inv(Phi')*Sll-S21));

end
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Y, nov calculating Fl_i and F2_i for i=k+n...k+l,

sufficient as only p_(k+n)...p_(k+l) considered,

7. here k sat to 0

Fl_i is of the same size as A, F2_i is of the same size as Thatat

Fl-zeros(Aslze(1), Aslze(2), n);

F2-zaros (Thetatsize (1) ,Thatatsize (2), n) ;

for i-n:-1:1

FI(:, : ,l)=Inv(eye (Asiza (I))- (Phi'*P ( :, :, l+l)*Ga_na+Sl2)*Minv*Gamma'*inv(Phi ')) ;

F2(:, : ,l)-Phi '*P(: , : ,l+l)*Thetat+Sl3- (Phi'*P( :, :, l+l)*Gamma+Sl2)

*Minv* ( Gam_na '*inv (Phi ' ) *S 13-$23) ;

end

matrices required for controller

F3--inv(S22+Gamma'*P(:,:,l)*Gamma);

F4-S21+Gam_a'*P(:,:,l)*Phi;

FS-S23+G--,_a'*P(:,:,l)*Thatat;

GF_num=zeros(Bsize(2),n+l); _ #rove like u_k, n+l columns for z'n...z'O

GF_den=zeros(l,n+l);

GF_den(1,1)=l; _ denominator is z'n

FProd=eye(Asize(1));

for l=l:n-1 _ coefficient for z'l

FProd=FProd*Fl(:,:,l)*Phi';

GF_num(:,n-1)=GF_num(:,n-l)+Gamma'*FProd*inv(Phi')*F2(:,:,l)

s[eye(Gsize(2));zsros(Gsiza(2),Gsize(2))3;

coefficient for z'I is located a_ column (n+l-l) j

additional shift left because of {>z )

GF_num(:,n-(l-l))=GF_num(:,n-(l-l))+Gamma'*FProdlinv(Phi_)*F2(:,:,l)

*[zeros(Gsize(2),Gsize(2));eye(Gsiza(2))];

coefficient for z'(l-1) is located at column (n+l-(l-l))p

additional shift left because of {>z )

end

GF_num(:,l)=GF_num(:,1)+Gamma'*FProd*Fl(:,:,n)*F2(:,:,n)

*[zeros(Gsize(2),Gsize(2));eye(Gsize(2))];

since z_(k+n)=O

GF_num(:,n)-GF_num(:,n)+FS*[eye(Gsize(2));zeros(Gsize(2),Gsize(2))];

GF_num(:,n+l)-FS*[zaros(Gsize(2),Gsize(2));aya(Gsize(2))];

A.4 Hinf_calc.m

This m-file calculates the H-inflnity norms of various transfer functions with the

gust measurement data as input "u" and the particular variable as the output "y".

For a dlscrete-tlme state space representation I can make usQ of the Matlab

function normhinf. Like for the rest of the simulation, I have to restrict to

scalar gust data. The dynamic matrix Aall refers to the controlled system, Atall

to the case of no controller in use

L-RC/norm(RC,'fro');

Bi_mat=zeros(Bsize(2),n+l);

if exist('Thetat','var')==l

for l=l:n+l

Bi_mat(:,l)=F3*GF_num(:,n+2-1);

end

else

for approach II
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for l-2:n+l

Bi_mat(:,l)-F3*GF_num(:,n+2-1); _ for approach I

end

end

K=F3*F4;

A11-Phi+Gazmna*K; _ Phic

A12-Ga_na*Bi_mat+[zsros(Gsize) Theta zeros(Gsize(1),(n-1)*Gsizs(2))];

A21-zeros(n+l,Asize(1));

A22=zeros(n+l,n+l);

for l-l:n

A22(I,I+I)-1;

end

Aall-[[AII A12] ; [A21 A22]];

Atll=Phi;

ltl2=[zeros(Gsize) Theta zeros(Gsize(1),(n-1)*Gsize(2))];

At21=A21;

At22-A22;

AtalI-[[Atll At12] ; [At21At22]];

Ball-zeros(lslze(1)+n+l,1);

Ball(Asize(1)+n+l,1)'l; _ last element of column vector is 1

Callx=[eye(Asize(1)) zsros(Asize(1),n+l)]; _ for the "system" m->systsm->x

Callu-[K Bi_mat]; _ for the "system" m->system->u

if exlst('Thetat','var')--I _ approach II ?

if exist('Hl','var')='l _ PT2 actuator ?

Calljn=-L*inv(H2)*[K2 D2 zeros(D2size(1),2*Dlsize(2))]

*[A zeros(Gsize) G zeros(Gsize(1),(n-1)_Gsize(2))];

else

Calljn--L*Inv(H2)*[K2 D2 zaros(D2slze(1),Dlsize(2))]

*[A zsros(Gsizs) G zeros(Gsize(1),(n-1)*Gsize(2))];

end

CalIJc-L*([R*(A+B*K) R*B*Bi_mat]

+[zsros(D2slze(1),Asize(2)) Gt*[zsros(Gsize(2),Gsize(2));eye(Gsize(2))]

Gt*[eye(Gsize(2));zsros(Gsize(2),Gsize(2))] zeros(D2size(1),(n-l)*Gslze(2))]);

else _ approach I

Callan=[L*l zeros(Gsize) L*G zeros(Gsize(1),(n-l)*Gsize(2))];

CalIac=L*([(A+B*K) B*Bi_mat]

+[zeros(Aslze) zeros(Gsize) G zeros(Gsize(1),(n-l)*Gsize(2))]);

end

Dallx-zeros(Asize(2),1);

Dallu-zeros(Bsize(2),l);

Dallan-zeroe(Asize(2),l);

Dallac=Dallan;

Dalljn=zeros(D2size(2),1);

Dalljc-Dalljn;

sysx=ss(Aall,Ball,Callx,Dallx,T);

sysu=ss(lall,Ball,Callu,Dallu,T);

if exiet('Thetat','var')==l _ approach II ?

sysJn-ss(Atall,Ba11,Calljn,DallJn,T);

sysJc=ss(Aall,Ball,Calljc,Dalljc,T);

else _ approach I

sysan=ss(Atall,Ball,Callan,Dallan,T);

sysac=se(Aall,Ball,Callac,Dallac,T);

end



Appendix A. Matlab M-Files 94

normx_lormhinf (sys x)

normu_normhinf (sysu)

if exiat('Thetat' , 'var')==l

normjn_normhinf (sysJn)

normj o=normhinf (sysJ c)

improve_J- (normj n-normj c)/normJ c

else

norman-normhinf (sysan)

normac_normhinf (sysac)

lmprove_a = (norman-normac)/normac

and

Y. approach II ?

approach I

A.5 pzmap_calc.m

This m-file calculates the Pole-zero map of the system with and without

the controller

A=Phi;

Ac-Phi+Ganna*FS*F4;

if exist('Ml','var')=-i

C-[eye(D2size), zeros(D2size), zeros(D2size(1),2*Dlsize(2))];

else

C-[eye(D2size), zeros(D2size), zeroe(D2size(1),Dlsize(2))];

end

B=zeros(Bsize); _ B, D do not matter for this purpose

D-zeros(D2eize(1),Bsize(2));

sys-ss(A,B,C,D,T);

sysc=ss(ac,B,C,D,T);

[P,Z]=pzmap(sys);

[Pc,Zc]-pzmap(sysc);

dummy=if(i,1);

pzmap(dummy);

zErid;

hold on

plot(P, 'gx');

plot(Pc, 'bx_);

SZ=size(Z);

SZc=siza(Zc);

if SZ(1)'-O

plot(Z, 'go');

end

if SZc(1)--O

plot(to, 'bo');

end

just to get the lables etc.


